RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, JANUARY 2015

FIRST YEAR

Date : 07/01/2015 COMPUTER SCIENCE (General)

Time : 11 am – 1 pm Paper : I Full Marks : 50

[Use a separate Answer Book for each group]

Group - A

Answer <u>either Q.No. 1 or 2</u> : [1×5]						
1.	a)	Given a string of ASCII characters whose bit patters have been converted into hexadecimal for compactness:				
		4A EF 68 6E 20 C4 EF E5				
		of the 8 bits in each pair of the digits, the left most is a parity bit. The remaining bits are the ASC code.	II			
		i) Convert to bit form and decode the ASCII				
		ii) Determine the parity used : even or odd (only write)	[4]			
	b)	Calculate: $(1001)_2 \times (11)_2$.	[1]			
2.	a)	Give the difference between weighted and Non-Weighted Codes with example.	[4]			
	b)	For 5-bit original data, what will be the minimum number of parity bits— (i) For single bit error				
		detection? (ii) For single bit error detection and correction?	[1]			
An	Answer <u>any two</u> questions from $Q.No. 3-6$: [2×10]					
3.	a)	What are the unused bit combinations for Excess-3 code? Give reasons.	[3]			
	b)	Write a short note on Hamming Code.	[3]			
	c)	Determine the base of the numbers in the following operations: (i) $14/2 = 5$, (ii) $132 - 25 = 104$.	[4]			
4.	a)	Find the value of 7's complement and 8's complement of the octal number 537, show the necessar	ry			
		steps.	[2]			
	b)	Minimize the following function using boolean algebra:	[3]			
	a)	f = a'bc + ca + a'bc' + ab'c + c'a + abc Give the significance of Gray Code with example.	[2]			
	c) d)	Express the boolean function $F=a+b'c$ in canonical form as the product of maxterms (using	[2]			
	u)	Boolean algebra).	[3]			
5.	a)	Prove that $\overline{a+b} = \overline{a} \cdot \overline{b}$, without using truth table.	[2]			
٥.	b)	i) Using 1's complement find the value of $(1001)_2 - (11101)_2 = ?$	[2]			
	٠,	ii) Using 2's complement find the value of $(1101)_2 - (1001)_2 = ?$	[2+2]			
	c)	The state of a 12-bits register is 100010010111 . What is it's content if it represents	[2 2]			
	C)	i) Three decimal digits in the Excess-3 code?				
		ii) Three decimal digits in the 8 4 -2 -1 code?	[4]			
6.	a)	What do you mean by Minterm and Maxterm explain with example.	[2]			
0.	b)	Draw the logic circuit of the following boolean expressions with only NAND gate	[2]			
	٠,	i) $x\overline{y} + xy + \overline{x}y$				
		ii) $A\overline{B}C + AB\overline{C} + \overline{ABC}$	[2+2]			
	c)	Simplify the following boolean function: $F(A, B, C, D) = \sum_{i=0}^{\infty} (0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$	[4]			
	,					

$\underline{Group-B}$

An.	swer	<u>either Q.No. 7 or 8</u> :	$[1\times5]$	
7.	a)	Differentiate between synchronous counter and asynchronous counter. Among them version faster and why?	which one is [2+2]	
	b)	Differentiate between encoder and priority encoder.	[1]	
8.	a)	Explain how a flip flop can act as a memory device with example.	[2]	
	b)	Differentiate between excitation table and truth table.	[2]	
	c)	Differentiate between Combinational Circuit and Sequential Circuit.	[1]	
Answer <u>any two</u> questions from <u>O.No. 9 – 12</u> :				
9.	a) b)	How can a D flip flop be operated in toggle mode without using any external input? Design a synchronous counter using negative edge triggered J-K flip flop which w		
	c)	following states: 1,2,5,6. Design a full adder using basic gates with its truth table.	[4] [4]	
10.	a)b)c)	Explain briefly the applications of a comparator. Convert a SR flip flop to a D flip flop. What will be the content of a 8-bit SISO shift left register after application of 7 clock initial content is 01110101 and serially alternative 0's and 1's are applied through the shift left? Do it stepwise.	_	
11.	a)b)c)d)	What do you mean by parallel loading in register? Write down the working principle of Multiplexer and Demultiplexer. Design a 4-bit magnitude comparator showing its truth table and logic diagram. Write down the working principle of a decoder.	[2] [1·5+1·5] [3·5] [1·5]	
12.	a)b)c)d)	What is a code converter? Design a gray-to-binary code convertor. What is the advantage of using master slave flip flop? Explain the difference between level triggered flip flop and edge triggered flip flop u diagram. Differentiate between bidirectional shift register and universal shift register.	[1+3] [2] sing suitable [2] [2]	

_____×___